Python - Clustering - Hierarchical Clustering
Data:
Questionnaire data from mall visitors contains sex, age, salary & shopping score (200 rows).
Mission:
How to predict the cluster group from given age & salary
Library used:
- Pandas
- Numpy
- Seaborn
- Matplotlib
- Scikit
Code:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
url = 'https://raw.githubusercontent.com/kokocamp/vlog101/master/vlog101.csv'
vlog128 = pd.read_csv(url)
vlog128.info()
X = vlog128[['Usia','Gaji (juta)']]
y = vlog128['Skor Belanja (1-100)']
sns.scatterplot(x="Usia",y="Gaji (juta)",data=vlog128,color="red",alpha=0.5)
n_clusters = 5
X = np.array(X)
hc = AgglomerativeClustering(n_clusters, affinity='euclidean', linkage='ward')
hc.fit(X)
#print(X)
nc = []
for i in range(n_clusters):
nc.append(i)
print(hc.labels_)
vlog128["kluster"] = hc.labels_
vlog128.head()
fig, ax = plt.subplots()
sct = ax.scatter(X[:,0],X[:,1], c = vlog128.kluster, marker = "o", alpha = 0.5)
plt.title("Hasil Klustering Hierarchical Clustering")
plt.xlabel("Usia")
plt.ylabel("Gaji (juta)")
plt.show()
usia = input("Usia (thn): ")
usia = int(usia)
gaji = input("Gaji (juta): ")
gaji = int(gaji)
data = [usia,gaji]
data = np.array([data])
xx = np.append(X,data,axis=0)
hasil = hc.fit_predict(xx)
print("Prediksi Kluster (0-4): ", hasil[hasil.size-1])
fig, ax = plt.subplots()
sct = ax.scatter(X[:,0],X[:,1], c = vlog128.kluster, marker = "o", alpha = 0.5)
plt.title("Hasil Klustering Hierarchical Clustering")
plt.xlabel("Usia")
plt.ylabel("Gaji (juta)")
plt.scatter(usia,gaji, c = "red", s=100)
plt.show()
I wrapped the scenario in a Youtube video below.
Click this link (http://paparadit.blogspot.com/2020/11/the-algorithms-of-machine-learning.html), if you want to check out for other algorithms. Thank you for for visiting this blog & subs my channel.
Labels: Programming, Python
PS: If you've benefit from this blog, you can support it by making a small contribution. |
Post a Comment
Leave comments here...